New Edition
Steels: Microstructure and Properties,
Edition 4
By H.K.D.H. Bhadeshia, Ph.D. and R.W.K. Honeycombe

Publication Date: 24 Jan 2017
Description

Steels: Structure and Properties, Fourth Edition is an essential text and reference, providing indispensable foundational content for researchers, metallurgists, and engineers in industry and academia. The book provides inspiring content for undergraduates, yet has a depth that makes it useful to researchers.

Steels represent the most used metallic material, possessing a wide range of structures and properties. By examining the properties of steels in conjunction with structure, this book provides a valuable description of the development and behavior of these materials—the very foundation of their widespread use.

The new edition has been thoroughly updated, with expanded content and improved organization, yet it retains its clear writing style, extensive bibliographies, and real-life examples.

Key Features

  • Contains a new chapter on nanostructured steels, with new content integrated into an existing chapter to describe the physical metallurgy of coatings, surface treatments, and multivariate high-performance steels
  • Includes derivations with important equations so that students from a broad range of subjects can appreciate the issues without being bogged down in mathematics
  • Presents new micrographs and figures that reflect the resolution and capabilities of modern instruments
About the author
By H.K.D.H. Bhadeshia, Ph.D., Professor of Physical Metallurgy, University of Cambridge, UK, and Adjunct Professor, Graduate Institute of Ferrous Technology, POSTECH, South Korea and R.W.K. Honeycombe, Emeritus Professor of Metallurgy, University of Cambridge, UK (deceased)
Table of Contents
  • Preface to the First Edition
  • Preface to the Second Edition
  • Preface to the Third Edition
  • Preface to the Fourth Edition
  • Acknowledgments
  • Acronyms
  • Nomenclature
  • Chapter 1: Iron and Its Interstitial Solutions
    • Abstract
    • 1.1. Introduction
    • 1.2. Allotropes of pure iron
    • 1.3. Austenite to ferrite transformation
    • 1.4. Carbon, nitrogen and hydrogen in solution
    • 1.5. Summary
    • References
  • Chapter 2: Strengthening of Iron and Its Alloys
    • Abstract
    • 2.1. Introduction
    • 2.2. Work hardening
    • 2.3. Interstitial solid solution strengthening
    • 2.4. Substitutional solution strengthening
    • 2.5. Grain size
    • 2.6. Dispersion strengthening
    • 2.7. Overall strength
    • 2.8. Some practical aspects
    • 2.9. Limits to strength
    • 2.10. Summary
    • References
  • Chapter 3: Iron-Carbon Equilibrium and Plain Carbon Steels
    • Abstract
    • 3.1. Iron-carbon equilibrium phase diagram
    • 3.2. Austenite-ferrite transformation
    • 3.3. Austenite-cementite transformation
    • 3.4. Kinetics of the ??a transformation
    • 3.5. Widmanstätten ferrite
    • 3.6. Austenite-pearlite reaction
    • 3.7. Ferrite-pearlite steels
    • 3.8. Summary
    • References
  • Chapter 4: Solutes that Substitute for Iron
    • Abstract
    • 4.1. General principles
    • 4.2. Alloying elements: ? and a phase fields
    • 4.3. Distribution of alloying elements in steels
    • 4.4. Effect of alloying elements on the kinetics of the ?/a transformation
    • 4.5. Structural changes resulting from alloying additions
    • 4.6. Transformation diagrams for alloy steels
    • 4.7. Light steels
    • 4.8. Summary
    • References
  • Chapter 5: Formation of Martensite
    • Abstract
    • 5.1. Introduction
    • 5.2. General characteristics
    • 5.3. Crystal structure of martensite
    • 5.4. Crystallography of martensitic transformations
    • 5.5. Morphology of ferrous martensites
    • 5.6. Kinetics of martensitic transformation
    • 5.7. Strength of martensite
    • 5.8. Shape memory effect
    • 5.9. Summary
    • References
  • Chapter 6: Bainite
    • Abstract
    • 6.1. Introduction
    • 6.2. Upper bainite (˜550-400°C)
    • 6.3. Lower bainite (˜400-250°C)
    • 6.4. The shape deformation
    • 6.5. Carbon in bainite
    • 6.6. Kinetics
    • 6.7. Transition from upper to lower bainite
    • 6.8. Granular bainite
    • 6.9. Tempering of bainite
    • 6.10. Role of alloying elements
    • 6.11. Use of bainitic steels
    • 6.12. Summary
    • References
  • Chapter 7: Acicular Ferrite
    • Abstract
    • 7.1. Introduction
    • 7.2. Microstructure
    • 7.3. Mechanism of transformation
    • 7.4. Inclusions as heterogeneous nucleation sites
    • 7.5. Nucleation of acicular ferrite
    • 7.6. Summary
    • References
  • Chapter 8: Heat Treatment of Steels: Hardenability
    • Abstract
    • 8.1. Introduction
    • 8.2. Use of TTT and continuous cooling diagrams
    • 8.3. Hardenability testing
    • 8.4. Effect of grain size and chemical composition on hardenability
    • 8.5. Hardenability and heat treatment
    • 8.6. Quenching stresses and quench cracks
    • 8.7. Cryogenic treatment
    • 8.8. Summary
    • References
  • Chapter 9: Tempering of Martensite
    • Abstract
    • 9.1. Introduction
    • 9.2. Tempering involving cementite and transition carbides
    • 9.3. Mechanical properties of tempered martensite
    • 9.4. Steels with strong carbide-forming elements
    • 9.5. Maraging steels
    • 9.6. Summary
    • References
  • Chapter 10: Thermomechanical Treatment of Steels
    • Abstract
    • 10.1. Introduction
    • 10.2. Controlled rolling of low-alloy steels
    • 10.3. Dual-phase steels
    • 10.4. TRIP-assisted steels
    • 10.5. TWIP steels
    • 10.6. Industrial steels subjected to thermomechanical treatments
    • 10.7. Ausforming
    • 10.8. Summary
    • References
  • Chapter 11: The Embrittlement and Fracture of Steels
    • Abstract
    • 11.1. Introduction
    • 11.2. Cleavage fracture in iron and steel
    • 11.3. Factors influencing the onset of cleavage fracture
    • 11.4. Criteria for the ductile-brittle transition
    • 11.5. Practical aspects of brittle fracture
    • 11.6. Hydrogen embrittlement
    • 11.7. Intergranular embrittlement
    • 11.8. Ductile or fibrous fracture
    • 11.9. Summary
    • References
  • Chapter 12: Stainless Steel
    • Abstract
    • 12.1. Introduction
    • 12.2. The iron-chromium-nickel system
    • 12.3. Chromium-rich carbide in Cr-Ni austenitic steels
    • 12.4. Precipitation of niobium and titanium carbides
    • 12.5. Nitrides in austenitic steels
    • 12.6. Intermetallic precipitation in austenite
    • 12.7. Austenitic steels in practical applications
    • 12.8. Oxidation resistant stainless steel
    • 12.9. Duplex and ferritic stainless steels
    • 12.10. Mechanically alloyed stainless steels
    • 12.11. Transformation of metastable austenite
    • 12.12. Summary
    • References
  • Chapter 13: Weld Microstructures
    • Abstract
    • 13.1. Introduction
    • 13.2. Fusion zone
    • 13.3. Heat-affected zone
    • 13.4. Friction stir welding of steels
    • 13.5. Summary
    • References
  • Chapter 14: Nanostructured Steels
    • Abstract
    • 14.1. Introduction
    • 14.2. Why the yearning for exceedingly fine grains?
    • 14.3. Production of nanostructured steel
    • 14.4. Detrimental nanostructures in steels
    • 14.5. Summary
    • References
  • Chapter 15: Modelling of Structure and Properties
    • Abstract
    • 15.1. Introduction
    • 15.2. Example 1: alloy design
    • 15.3. Example 2: mechanical properties of mixed microstructures
    • 15.4. Methods
    • 15.5. Kinetics
    • 15.6. Finite element method
    • 15.7. Neural networks
    • 15.8. Summary
    • References
  • Subject index
Book details
ISBN: 9780081002704
Page Count: 488
Retail Price : £99.00
  • Gasik, Handbook of Ferroalloys, Butterworth-Heinemann, Jul 2013, 9780080977539, 536 pp., $229.95
  • Sha and Guo, Maraging Steels, Woodhead Publishing, Oct 2009, 9781845696863, 216 pp., $230.00
  • Abe, Creep-Resistant Steels, Woodhead, Mar 2008, 9781845691783, 700 pp., $330.00
Audience

Metallurgists, materials engineers and researchers in the steel industry; Senior undergraduate students and postgraduates in materials science, physical metallurgy and mechanical engineering