Computational Fluid Dynamics in Fire Engineering,
Edition 1 Theory, Modelling and Practice
By Guan Heng Yeoh, Ph.D., Mechanical Engineering (CFD), University of New South Wales, Sydney and Kwok Kit Yuen

Publication Date: 29 Jun 2009
Description
Fire and combustion presents a significant engineering challenge to mechanical, civil and dedicated fire engineers, as well as specialists in the process and chemical, safety, buildings and structural fields. We are reminded of the tragic outcomes of ‘untenable’ fire disasters such as at King’s Cross underground station or Switzerland’s St Gotthard tunnel. In these and many other cases, computational fluid dynamics (CFD) is at the forefront of active research into unravelling the probable causes of fires and helping to design structures and systems to ensure that they are less likely in the future. Computational fluid dynamics (CFD) is routinely used as an analysis tool in fire and combustion engineering as it possesses the ability to handle the complex geometries and characteristics of combustion and fire. This book shows engineering students and professionals how to understand and use this powerful tool in the study of combustion processes, and in the engineering of safer or more fire resistant (or conversely, more fire-efficient) structures.No other book is dedicated to computer-based fire dynamics tools and systems. It is supported by a rigorous pedagogy, including worked examples to illustrate the capabilities of different models, an introduction to the essential aspects of fire physics, examination and self-test exercises, fully worked solutions and a suite of accompanying software for use in industry standard modeling systems.

Key Features

  • Computational Fluid Dynamics (CFD) is widely used in engineering analysis; this is the only book dedicated to CFD modeling analysis in fire and combustion engineering
  • Strong pedagogic features mean this book can be used as a text for graduate level mechanical, civil, structural and fire engineering courses, while its coverage of the latest techniques and industry standard software make it an important reference for researchers and professional engineers in the mechanical and structural sectors, and by fire engineers, safety consultants and regulators
  • Strong author team (CUHK is a recognized centre of excellence in fire eng) deliver an expert package for students and professionals, showing both theory and applications. Accompanied by CFD modeling code and ready to use simulations to run in industry-standard ANSYS-CFX and Fluent software
About the author
By Guan Heng Yeoh, Ph.D., Mechanical Engineering (CFD), University of New South Wales, Sydney, Professor, Mechanical Engineering (CFD), University of New South Wales, Sydney, Australian Nuclear Science and Technology Organisation, University of New South Wales, Australia and Kwok Kit Yuen
Table of Contents
1. Introduction2. Field Modeling ApproachCFD Basics2.1 What is Computational Fluid Dynamics2.2 Computational Fluid Dynamics in Field Modeling2.3 Equations of State2.4 Equations of Motion 2.5 Differential and Integral Form of the Transport Equations2.6 Physical Interpretation of Boundary Conditions for Field Models2.7 Numerical Approximations of Transport Equations for Field Models 2.8 SummaryTurbulence2.9 What is Turbulence2.10 Overview of Turbulence Modeling Approaches2.11 Additional Equations for Turbulent Flow - Standard k-ƒÕ Turbulence Model 2.12 Turbulence Models2.13 Near-Wall Treatments2.14 Setting Boundary Conditions2.15 Guidelines for Selecting Turbulence Models in Field Modeling2.16 Worked Example on Different Turbulence Models in Fire Modeling2.17 SummaryReferences and Suggested Reading Exercises3. Combustion Modeling3.1 Turbulent Combustion in Fires3.2 Detailed Chemistry vs Simplified Chemistry3.3 Overview of Combustion Modeling Approaches3.4 Combustion Models3.5 Guidelines for Selecting Combustion Models in Field Modeling3.6 Worked Examples of Combustion Models Applied to Full-Scale Enclosure Fires3.7 SummaryRadiation Modelling3.8 Radiation in Fires3.9 Radiative Transfer Equation3.10 Radiation Models for Field Modeling3.11 Benefits and Limitations of Different Radiation Models3.12 Radiation in Combusting Flows3.13 Guidelines for Selecting Radiation Models in Field Modeling3.14 Worked Examples on Radiation Models in Full Scale Enclosure Fires3.15 SummaryReferences and Suggested Reading Exercises4. Soot Production and Pyrolysis4.1 Importance of Soot Radiation4.2 Overview and Limitations of Soot Modeling4.3 Soot Models for Field Modeling4.4 Population Balance Approach to Soot Formation4.5 Guidelines for Selecting Soot Models in Field Modeling4.6 Worked Examples on Application of Soot Models in Fire Modeling4.7 Summary4.8 Importance of Pyrolysis in Fires4.9 Phenomenological Understanding of Pyrolysis Processes 4.10 Formulation of Governing Equations4.11 Physical Description of Pyrolysis Processes 4.12 Practical Guidelines to Pyrolysis Models in Field Modeling4.13 Worked Example on Ignition of Combustible Materials in a Cone Calorimeter Meter4.14 Worked Example on Fire Growth and Flame Spread over Combustible Wall Lining in a Single-Compartment4.15 SummaryReferences and Suggested Reading Exercises5. Probabilistic Approaches and Applications5.1 Aspects of Fire Risk5.2 Applications in Fire Design and Assessment 5.3 Combustion and Fire Modeling 5.4 Worked Examples on Fire Assessment in Fire Modeling5.5 SummaryReferences and Suggested ReadingExercises6. Advanced and Modeling Techniques6.1 Next Stages of Development and Application 6.2 Alternative Approach to Handling Turbulence 6.3 Reynolds Averaging Navier Stokes vs Large Eddy Simulation6.4 Formulation of Numerical Algorithm6.5 Worked Example of Large Eddy Simulation 6.6 Summary6.7 Consideration and Feasibility for Fire Prediction6.8 Soft Computing6.9 Typical Models of Soft Computing 6.10 Need for Historical Data6.11 Structure of Prediction Models6.12 Training and Tuning of Prediction Models6.13 Assessment of Models6.14 Worked Examples on Application of Soft Computing Models in Fire Prediction6.15 SummaryReferences and Suggested ReadingExercises7. Application of Modeling for Fire Safety Evaluation and Assessment (appendix?)7.1 Introduction7.2 Case study: Adopting Performance-based Methodologies7.3 Case study: Deterministic Approach7.4 Case study: Probabilistic Approach7.5 SummaryReferences and Suggested ReadingExercises
Book details
ISBN: 9780750685894
Page Count: 544
Retail Price : £80.00
9780122858529; 9780750664431; 9780750665940
Audience
Graduate students studying combustion or fire engineering in mechanical or civil engineering departments, plus those studying CFD, computational analysis, thermal engineering, multiphase flow, and physics